mysql导入太慢解决方法

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://dwsun.blog.csdn.net/article/details/87778577

mysql导入太慢解决方法

半调子数据科学家又要折腾数据,拿到数据一看,3.6G的zip文件,解压看看,卧槽12个G的sql文件。好吧,又要折腾sql数据了。第一件事,肯定是搭一个数据库,导入数据咯。

折腾过sql导入的亲们都知道,mysql默认的参数,导入的速度还是很慢的,特别是数据忒多的情况。这次的数据,折腾完了之后,有1000W条那么多,不用猜也知道,慢的要死,所以需要对数据库做一些设置。

可以设置的地方有两个,第一个是innodb_flush_log_at_trx_commit。官方手册对各个值解释如下:

Controls the balance between strict ACID compliance for commit operations and higher performance that is possible when commit-related I/O operations are rearranged and done in batches. You can achieve better performance by changing the default value but then you can lose up to a second of transactions in a crash.

The default value of 1 is required for full ACID compliance. With this value, the contents of the InnoDB log buffer are written out to the log file at each transaction commit and the log file is flushed to disk.

With a value of 0, the contents of the InnoDB log buffer are written to the log file approximately once per second and the log file is flushed to disk. No writes from the log buffer to the log file are performed at transaction commit. Once-per-second flushing is not guaranteed to happen every second due to process scheduling issues. Because the flush to disk operation only occurs approximately once per second, you can lose up to a second of transactions with any mysqld process crash.

With a value of 2, the contents of the InnoDB log buffer are written to the log file after each transaction commit and the log file is flushed to disk approximately once per second. Once-per-second flushing is not 100% guaranteed to happen every second, due to process scheduling issues. Because the flush to disk operation only occurs approximately once per second, you can lose up to a second of transactions in an operating system crash or a power outage.

InnoDB log flushing frequency is controlled by innodb_flush_log_at_timeout, which allows you to set log flushing frequency to N seconds (where N is 1 ... 2700, with a default value of 1). However, any mysqld process crash can erase up to N seconds of transactions.

DDL changes and other internal InnoDB activities flush the InnoDB log independent of the innodb_flush_log_at_trx_commit setting.

InnoDB crash recovery works regardless of the innodb_flush_log_at_trx_commit setting. Transactions are either applied entirely or erased entirely.

For durability and consistency in a replication setup that uses InnoDB with transactions:

If binary logging is enabled, set sync_binlog=1.

Always set innodb_flush_log_at_trx_commit=1.

Caution
Many operating systems and some disk hardware fool the flush-to-disk operation. They may tell mysqld that the flush has taken place, even though it has not. In this case, the durability of transactions is not guaranteed even with the setting 1, and in the worst case, a power outage can corrupt InnoDB data. Using a battery-backed disk cache in the SCSI disk controller or in the disk itself speeds up file flushes, and makes the operation safer. You can also try to disable the caching of disk writes in hardware caches.

也就是

  • 1 默认值,最慢,每次事务提交都要写入log并刷新到磁盘上,这是最保险的方式
  • 0 最快,每隔1S将log刷新到磁盘,但是不保证。事务提交不会触发log写入。很不安全,mysql挂了,那么上一秒的数据就都丢了。
  • 2 折中的一种,事务提交会写入log,但是log刷新还是每秒一次,不保证。这种时候,就算mysql崩了,但是只要操作系统还在运转,数据还是会被写到磁盘上。

这里提到,有些磁盘系统,就算是刷新也无法保证数据确实被写入了,笔者就碰到过文件copy到硬盘(机械硬盘)上,机器死掉了,重启之后,只有不到一半的数据还在。查了才知道,数据只是被写入硬盘的缓存上了,还没有写入硬盘。

这个参数可以在my.ini里面设置,但是我们只是临时用一下,而且我本地用的是docker的mysql,弄配置文件比较麻烦,所以直接在mysql命令行里面设置就可以了。

mysql> set GLOBAL innodb_flush_log_at_trx_commit = 0;

第二个可以设置的地方,在导入sql时候使用的参数:

net_buffer_length

Each client thread is associated with a connection buffer and result buffer. Both begin with a size given by net_buffer_length but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer shrinks to net_buffer_length after each SQL statement.

This variable should not normally be changed, but if you have very little memory, you can set it to the expected length of statements sent by clients. If statements exceed this length, the connection buffer is automatically enlarged. The maximum value to which net_buffer_length can be set is 1MB.

max_allowed_packet

The maximum size of one packet or any generated/intermediate string, or any parameter sent by the mysql_stmt_send_long_data() C API function. The default is 4MB.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to max_allowed_packet bytes when needed. This value by default is small, to catch large (possibly incorrect) packets.

You must increase this value if you are using large BLOB columns or long strings. It should be as big as the largest BLOB you want to use. The protocol limit for max_allowed_packet is 1GB. The value should be a multiple of 1024; nonmultiples are rounded down to the nearest multiple.

When you change the message buffer size by changing the value of the max_allowed_packet variable, you should also change the buffer size on the client side if your client program permits it. The default max_allowed_packet value built in to the client library is 1GB, but individual client programs might override this. For example, mysql and mysqldump have defaults of 16MB and 24MB, respectively. They also enable you to change the client-side value by setting max_allowed_packet on the command line or in an option file.

The session value of this variable is read only. The client can receive up to as many bytes as the session value. However, the server will not send to the client more bytes than the current global max_allowed_packet value. (The global value could be less than the session value if the global value is changed after the client connects.)

需要注意的事,需要先确定服务端的设置,客户端的设置不能大于服务端设置。

mysql>show variables like 'max_allowed_packet'; 
mysql>show variables like 'net_buffer_length'; 

事实上,我用的mariadb的docker,这两个值的设置已经非常大了。而且官方也提到,mysql命令行里面的默认设置是足够大的,不过我测试的结果,还是写上去,速度会快一点,不晓得为啥。

mysql -h127.0.0.1 -uroot -proot123 data_base_name --max_allowed_packet=16777216 --net_buffer_length=16384<your_sql_script.sql

不过,虽说速度快了很多,但是也是几个小时的功夫才折腾完,这一次的数据文本居多,不知道是不是因为这个,还是有什么别的设置我不知道的。

顺便说一句,后面为了方便还是把数据折腾到mongo里面了,数据占的空间大了挺多,但是同样是单线程操作,中间还加了挺多数据处理,但是一小时之内就搞定了。

半调子数据科学家,还要继续折腾数据。。。

(* ̄︿ ̄)

posted on 2018-05-24 22:11 dwSun 阅读(...) 评论(...) 编辑 收藏

展开阅读全文

导入sql太慢

07-18

[code=SQL]rnCREATE TABLE all_sales(rn YEAR INTEGER NOT NULL ,rn MONTH INTEGER NOT NULL ,rn prd_type_id INTEGER CONSTRAINT all_sales_fk_product_types REFERENCES product_types(product_type_id),rn emp_id INTEGER CONSTRAINT all_sales_fk_employees2 REFERENCES employees2(employee_id),rn amount NUMBER(5,2),rn CONSTRAINT all_sales_pk PRIMARY KEY (year,month,prd_type_id,emp_id)rn );rn[/code]rnrn[code=SQL]INSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 1, 10034.84rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 2, 15144.65rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 3, 20137.83rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 4, 25057.45rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 5, 17214.564rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 6, 15564.64rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 7, 12654.84rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 8, 17434.82rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 9, 19854.57rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 10, 21754.19rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 11, 13029.73rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 1, 2003, 12, 10034.84rn);rnrnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 1, 1034.84rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 2, 1544.65rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 3, 2037.83rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 4, 2557.45rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 5, 1714.564rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 6, 1564.64rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 7, 1264.84rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 8, 1734.82rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 9, 1854.57rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 10, 2754.19rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 11, 1329.73rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 2, 2003, 12, 1034.84rn);rnrnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 1, 6034.84rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 2, 1944.65rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 3, 2537.83rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 4, 4557.45rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 5, 3714.564rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 6, 3564.64rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 7, 21264.84rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 8, 21734.82rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 9, 12854.57rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 10, 32754.19rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 11, 15329.73rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 3, 2003, 12, 14034.84rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 1, 3034.84rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 2, 2944.65rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 3, 5537.83rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 4, 3557.45rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 5, 2714.564rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 6, 7564.64rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 7, 1264.84rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 8, 21734.82rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 9, 14854.57rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 10, 22754.19rn);rnrnINSERT INTO all_sales (rn emp_id, prd_type_id, year, month, amountrn) VALUES (rn 21, 4, 2003, 11, 11329.73rn);[/code]rn是不是表中限制条件太多,像上面的sql insert 语句在文件里有44kb ,我试过oracle insert ,sql insert ,pl/sql inser 没有一个是大五分内导完的 论坛

没有更多推荐了,返回首页